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A three-dimensional hydroelastic model of the dynamical motion in the cochlea is 
analysed. The fluid is Newtonian and incompressible, and the basilar membrane is 
modelled as an orthotropic elastic plate. Asymptotic expansions are introduced, 
based on slender-body theory and the relative high frequencies in the hearing range, 
which reduce the problem to an eigenvalue problem in the transverse cross-section. 
After this, an example is worked out and a comparison is made with experiment and 
the earlier low-frequency theory. 

1. Introduction 
The problem of the high-frequency response of the cochlea has been studied rather 

extensively over the past few years. The primary reason is that the earlier theories 
are, seemingly, incapable of describing the rather sharp tuning present in the cochlea. 
I n  this paper a hydroelastic model of the dynamic response in the cochlea is proposed 
and then analysed for high, or a t  least moderately high, frequencies. Except for a few 
minor differences, the model is essentially the same as that used in Holmes (1981). 
One such difference is that the basilar membrane is now taken to  be an orthotropic 
elastic plate. This assumption is made because of the fibre network present in the 
basilar membrane and is motivated by the observations of Voldrich (1978). The most 
important difference, however, is that certain adjustments are made in the asymptotics 
to  account for the higher frequencies. This is, in fact, what distinguishes the present 
analysis from the earlier low-frequency theory. 

I n  $32 and 3 the problem is formulated and the underlying assumptions are pre- 
sented. After this, the problem is reduced using a WKB type of approximation for 
a slender body. Aside from the differences mentioned earlier, this is essentially an 
extension of the approach used in the low-frequency theory. With it, the problem 
eventually reduces to  a two-dimensional eigenvalue problem involving the fluid 
pressure and the displacement of the basilar membrane in the transverse cross-section. 
I n  $6,  the reduced problem is solved by rewriting it, using a Green function, as an 
integro-differential equation for the displacement of the basilar membrane, and then 
expanding the solution in a Fourier series. Using the parameter values given in 
Holmes (1981), the resulting solution is shown to agree reasonably well, in the 
moderate- to  high-frequency range, with experimental observations. 

There are differences between our approach and almost every other model for the 
high-frequency response. For example, the problem treated here is fully three- 
dimensional, which distinguishes it from Lesser & Berkley (1972), Allen (1977) and 
de Boer (1 979). These authors arguc, justifiably, that two-dimensional systems are 
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more tractable and are, perhaps, the logical extension of the earlier long-wave theories. 
As stated above, with our approach, the problem also reduces to  solving a two- 
dimensional system. The difference is that it is not in the longitudinal cross-section 
but, rather, in the transverse direction. Perhaps the two most important differences are 
that both the motion of the basilar membrane and the effects of the fluid viscosity are 
treated more carefully here. For example, it is almost universal to  consider the motion 
of the basilar membrane as passive; i.e. to  prescribe its motion in the formulation of the 
model. This has been done using impedance functions, as in the papers mentioned 
above, or by using a, presumably, first-term approximation of itsdeflection asin Steele & 
Taber (1 979). Both of these assumptions go a long way in simplifying the problem but 
a t  the same timegive rise to questions concerning their justifiability and/or consistency. 
In  the analysis to  follow, this difficulty does not occur as the motion of the basilar 
membrane is one of the principal components of the equations of motion. As a con- 
sequence of this, the following analysis is more general than the other theories. 

2. Formulation of model 
I n  what follows, the cochlea is idealized to consist of an unrolled tapered tube con- 

taining two chambers that are each filled with an incompressible viscous fluid (figure 1) .  
The chambers are separated by a planar region, which contains a rigid section 
representing the bony shelf, and a flexible portion F representing the basilar mem- 
brane. At the apical end the two chambers are connected by an aperture in the par- 
tition, known as the helicotrema. The outer boundary of the cochlea consists of a rigid 
portion, called the cochlear wall, and two openings a t  the basal end that are each 
covered by a flexible membrane. The stapes transmits the signals from the outer ear 
to  the cochlea by pushing against the upper opening rw, which is known as the oval 
window. The lower opening, the round window, is represented by rR. For simplicity, the 
cochlear wall is assumed to  be symmetric through the (x ,  9)-plane. Also, away from the 
ends x = 0 , l  it is assumed that the boundary of the basilar membrane can be written as 
y = G, (x ) .  The part of the boundary given by y = G+(x) represents the portion attached 
to  the spiral lamina, and y = G-(x) is the portion attached to  the spiral ligament. 

The basilar membrane is modelled as a linear orthotropic elastic plate with a 
uniform thickness and which is simply supported along its boundary. The deflection 
of the plate is represented by ~ ( x ,  y, t ) .  

The velocity and pressure of the fluid are represented by v(x, y, z ,  t )  and p(x ,  y, z ,  t ) ,  
respectively. I n  what follows, both the dependent and independent variables are 
assumed to  be dimensionless. Asterisks are used toindicate their dimensional analogues. 
So, for example, the non-dimensional spatial co-ordinates x ,  y, z are related to x*, y*, z* 
as follows: 

where L and B are the length and width of the basilar membrane, respectively. 
I n  non-dimensional form, the equations describing the motion are (Holmes 1981) 
(i) for the fluid 

( l a )  

a a a  
s2-v1+-'U2+-v~ = 0; 
ax ay az 
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FIGUILE 1.  Geometry and notation for the hydroelastic model of the cochlea. Shown are a 
cutaway view of the cochlea, the plan form of the partition, and the transverse cross-section of 
the cochlea. 

(ii) for the basilar membrane 

where p and v represent the density and kinematic viscosity of the fluid, and p is the 
mass density of the plate. Also, nrlc 

where 0; is the (dimensional) binding rigidity of the plate in the y-direction, and 

rpir = p(x, Y, o+, t )  - p ( x ,  Y, 0-, t ) .  

The Dl and D, in ( l c )  represent the respective bending and twisting rigidities nor- 
malized by 0;. 

The fluid velocity satisfies the usual kinematic condition on the plate, i.e. 

Also, it satisfies the no-slip condition on the rigid portion of the cochlear wall and the 
bony shelf. 

As a final comment on the notation, the cross-section of the upper chamber is 
represented by Y (figure 1). The boundary of Y, which is denoted by a'?", consists of 
a rigid section C, as well as the flexible portion from the basilar membrane which is 
representetl by Pr. 

3-2 
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3 .  Time-independent problem 

forcing. Accordingly, it is assumed that 
We are interested, principally, in the longtime solution of the problem for a periodic 

v = u(x, y, z )  e i w t ,  p = @(x, y ,  x )  ei”t, 7 = c(x, y )  eiwt. (3) 

I n  $4, asymptotic expansions based on the smallness of the parameter E are intro- 
duced. Since we are also concerned with the response for moderately high frequencies, 
we assume 

0 = 2. (4) 
w 

E 

Also, owing to the small mass density of the basilar membrane 

With (3)-(5) the problem to be solved is given as follows: 

i0,u - &V:u = - EVP, 

where 

I n  the last two boundary conditions, i t  is assumed that the displacement of the 
upper, and lower, window has the form 

T~ = Cw(y,4eiwt .  

Also, in addition to  (7) ,  u satisfies the no-slip condition on the remainder of the 
cochlear wall and bony shelf, and 5 satisfies the simply supported boundary condi- 
tions described earlier. 

As a consequence of the symmetry of the above problem, @, u1 and u2 are odd func- 
tions of z, whereas us is an even function. Therefore, it suffices to consider only the 
motion in the scala vestibuli; that is, in the upper chamber. I n  this case, the stress on 
the basilar membrane in (6c) due to the fluid is simply twice the value obtained from 
the scala vestibuli. 

It should be pointed out that (4) is not used simply to  incorporate a higher-frequency 
regime into the asymptotics. The particular dependence used here corresponds to a 
distinguished limit, which is appropriate in problems involving several parameters 
(see, for example O’Malley 1967). There are, of course, other distinguished limits that  
can, and probably should, be studied. However, in what follows, the dependence 
given in (4) is used. 
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4. Asymptotic expansions 
To solve (6) and (7), we now introduce asymptotic expansions based on small E .  As 

is apparent from ( s a ) ,  this will necessitate a study of viscous boundary layers as well 
as an edge layer near the upper window. A summary of the results of the analysis to  
follow can be found in 5 5.  

Inviscid region 

As mentioned above, away from the immediate vicinity of the stapes, the fluid flow 
is composed of an inviscid core and a boundary-layer region very near the cochlear 
wall. I n  the inviscid region, the appropriate expansions are 

1 P ; exp (; + $) [P,(X, Y ,  2) + €*Pl + . . .I, 
where 8 and q5 depend only on x. 

Inserting (8) into (a), one finds that 
a a 

aY 
iwOu,, = - e ,po ,  iw,u2, = - -p0 ,  iw0u30 = - z ~ 0 9  

The boundary conditions for p o  are determined later by matching the above functions 
with the boundary-layer solution. I n  the meantime, note that (10) is to  be solved in 
the cross-sectional region Y, and so, as i t  stands, the x-dependence of Po is not com- 
pletely determined. 

To find the function $(x), we need t'o consider the problem for the O ( E ) )  terms in 
(8). From (6), one finds that  this is 

a a 
~ a : ~ 1 1 + ~ x ~ l o + - ~ ~ l + - u 3 1  = 0. ay a2 

From this, i t  follows that 

Again this is to be solved in Y. Once the boundary conditions for p l  are determined, 
( 1 2 )  is used to find $(x) by multiplying this equation by po  and then integrating over 
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the cross-section. However, note t,hat (11) or ( 1 2 )  do not resolve the indeterminacy 
ofp, as a function of x. To do this, it is necessary to consider the problem for the O(s)  
terms in (8). Carrying out the details, one finds that, for p2, the analogue of ( 1 2 )  is 

Boundary-layer region 

It still remains to find the appropriate boundary conditions for p,, p1 and p2 as well 
as to find the reduced equation for the motion of the basilar membrane. For the 
boundary layer above the basilar membrane, we introduce the co-ordinate 2 = ze-9. 
In  this case, the problem takes the form 

(14b)  
a a a 
ax ay az E%-U1+€~-U2+-U3 = 0, 

The expansions have essentially the same form as in the inviscid region, and so 

Introducing these expansions into (14), and matching the solutions with t,hose from 
t'he inviscid region, one finds, not unexpectedly, that 

Uaol r  = = iwo50(x,Y), =polr* 

With this, i t  follows that 

Similarly, on the rigid portion C of the cross-sectional boundary we have that 

a 
Polr = 0, 

where n refers to the unit outward normal to X. 
Note that, from (16)) the normal stress on the basilttr membrane due to the vertical 
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component of the fluid velocity does not contribute to the first term. I n  fact, from 
(14) one can see that it does not enter until the O(s) problem. 

To determine the boundary conditions for p1 and p 2  it is necessary to consider the 
next two higher-order problems in the boundary layer. The details of the calculations 
are not given here. I n  essence, as in the first-order problem, the boundary condition 
to  be used in the inviscid problem comes from the vertical, or normal, component of 
the velocity. I n  particular, one finds that on the basilar membrane 

'%21r = 

8 2  
where 

Also, on the rigid portion of the cochlear wall 
p2= iwo*  

ip a2 

%Z\Z = --(p- i a2 +p2a;li..)iz- a 2  wo an2P1 

%ilz = -- wo -Pol an c )  

The O ( d )  problem for the displacement of the basilar membrane is 

Now, with (19) and (21) the boundary conditions for pl are 

a 

(23) 

The function $(x) can now be determined, aside from an integration constant, by 
multiplying (12) by po, using Green's theorem, and then introducing (23) and (24). 
The result is given in (33). 

As withPo, p 1  is not entirely determined by (12) and (24). I n  particular, any multiple 
of the function po  can be added to  p l .  The same holds for p 2 .  This can be resolved, as 
it is for po, through the use of consistency conditions from the higher-order problems. 
However, as this indeterminacy has no effect on what follows, it will be ignored. 

I n  any case, it still remains to resolve the dependence of po on the longitudinal CO- 

ordinate. This comes by setting 

p&x, y ,  x )  = Ar(x)pr(x, Y ,  4,  
where pr is a particular solution of (10). Multiplying (13) by po, integrating over the 
cross-section, and then using Green's theorem, one finds that 

(25 a )  
d 
dx -A!(x) + f ( x ) A ; ( x )  = 0, 

where 
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Therefore, ignoring the 0(p2) terms in ( 2 5 b ) ,  we have 

ozJ P F .  
Y 

Edge layer 

To complete the problem, it is necessary to take into account both an edge layer, as 
well as a viscous boundary layer, near the oval window. The reason is that this will 
determine the correct boundary conditions to be used a t  the basal end. 

The co-ordinate for the viscous boundary layer is P = xs-4, and for the edge layer 
itj is 2 = XE-~. Without going through the details, i t  is found that the matching con- 
dition comes from the conservation of the fluid volume. Thus, it is required that 

P P 

where O(0) = $(O) = 0. (28) 

(29) 

Therefore 
~ , / ~ p ~ d y d z  = w ; / r w ~ , a y a z  for x = 0. 

For the special case of a uniform unit displacement of the stapes, (29) reduces to 

podydz = w ; A ,  for x = 0, (30) 
e x L  

where A ,  represents the (dimensionless) area of the oval window. 
As a final remark, it should be pointed out that  (27) omits the displacemeiit of the 

basilar membrane in the edge layer. This has no effect on the analysis to follow. The 
reason is that this boundary condition is actually only used when discussing tuning 
curves, and so i t  is only necessary to know the correct dependence on u0. Conse- 
quently, (30) is sufficient. 

5. Summary of the reduction 

approximately, 
To summarize the results of $4, i t  is found that, the solution of (6) and ( 7 )  is, 

(31 a )  
1 

fj N - e*cz)po(x, y ,  z ) ,  
E 

(318) 
1 

5 - ; e+(?L@, Y ,  4, 

where 
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The functions 8(x) ,  po and Q are solutions of 

where 

a 
-po= 0 on C, 
an 

in r, 

( 3 2 d )  

( 3 2 e )  

The function #(x) is specified later (equation ( 3 3 ) ) .  
Therefore 8(x)  can be thought of PS an eigenvalue, and po and co as the corres- 

ponding eigenfunctions, of ( 3 2 ) .  However, note that ( 3 2 )  only determines how po 
and c,, depend on y and z, since these functions can be multiplied by an arbitrary 
function of x and still satisfy ( 3 2 ) .  This is not true for 8. Also, the above approximations 
for u1 and u2 do not hold in the immediate vicinity of the cochlear boundary because 
of the influence of the viscous boundary layer in this region. An eigenvalue problem 
similar to  ( 3 2 a )  has also been obtained by Chadwick (1981), although his treatment 
of the viscosity and his asymptotic approximations are different from those used here. 
I n  doing so, he illustrates some of the interesting effects the inertia of the basilar 
membrane can have on the dynamic response. 

I n  the examples to be discussed later, the function 8(x)  is imaginary. Consequently, 
we will refer to  it as the phase function, although, as it turns out, #(x) also contributes 
slightly to the overall phase. As in the low-frequency theory, the phase function is 
determined from the inviscid problem. However, it should be emphasized that the 
travelling-wave solution that comes from ( 3 1 )  is due entirely to  the viscosity. I n  
particular, it is implicitly assumed here that the viscous attenuation of the wave is 
such that the boundary conditions at  the apical end can be ignored. Even with a non- 
zero viscosity, this imposes a lower bound on the frequencies for which the above 
analysis is applicable. As we shall see, for the human cochlea this limit is somewhere 
between 500 and 1000 Hz. If the fluid is inviscid, so that there is no damping in the 
system, then only standing waves are obtained because of the finite geometry. 
Finally, note that, unlike the low-frequency theory, the fluid flow is fully three- 
dimensional and that the longitudinal coupling in the basilar membrane is present 
in the reduced problem. 

The function #(x) is found from the consistency condition for the O(e4) terms in the 
above expansions. In  particular, i t  is found that 

where /3 = G(iwo)-4. Assuming, for the moment, that  the phase function is imaginary, 
it follows that the integrals in ( 3 3 )  are positive. Therefore $(x) is complex-valued, and 
so i t  is the principal contributor to the attenuation of the wave. With this in mind 
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note, from (33)) that the bending and twisting rigidities Dl and D, act to  reduce the 
damping. In  other words, the longitudinal coupling in the basilar membrane acts to 
reduce the damping, which is consistent with the observations of Steele & Taber (1979). 

To complete the solution, the dependence of p, and [, on x has to  be determined. 
This comes from the problem for the O ( E )  terms in the expansions. Letting 

Po = Ar(X)Pr(X, y, z ) ,  6 = -444 a x ,  y), 

where p r  and Cr form a particular solution of (32)) then from (26) 

The constant A ,  is determined from the boundary condition a t  the basal end. From 
(30) one finds that 

O(0) = $(O) = 0. (36) 

The eigenvalue problem (32)) along with (33)-(36), determines the complete solu- 
tion to the first-order approximation. It applies to any cross-sectional geometry so 
long as the symmetry conditions stated in $ 2  are satisfied. As for 19(x), there is some 
question as to how many eigenvalues there are for (32). I n  the example to be discussed 
next there is, in fact, only one. More precisely, there is only one value for i3;, which 
in turn results in two values for 0. The correction to f l (x ) ,  i.e. $(x), is, as has already 
been pointed out, principally responsible for the attenuation of the wave. With this 
in mind, note that i t  depends on the entire cross-section and not just on the portion 
above the basilar membrane. This is consistent with what is found in the low- 
frequency theory. It also shows that it is not sufficient to  consider only the boundary 
layer above the basilar membrane. 

6. Solution of eigenvalue problem 
There are a number of ways to solve the eigenvalue problem for the phase function. 

The one to be used here involves the use of the Green function 9 ( x ,  y, z ;  ( , 7 ) ,  which is 
the solut>ion of 

in Y, 

where n.(YC,gT) = 0 on LW, 

and 6( ) is Dirac’s delta function. It is being assumed, for the moment, that 0; is 
known. Also, the boundary condition means that the normal derivative of 3, with 
respect to the ([,T)-co-ordinates, is zero. With this, the solution of (32a, c,  d )  is 
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FIGURE 2. Transverse cross-section of the cochlea used in solving eigenvalue problem. 

The eigenvalue problem now takes the form 

where W S ,  Y; 6 )  = q x >  y, 0; , L O ) .  

To continue, i t  is necessary to specify the geometry, and so it is now assumed that 
the upper and lower cross-sections are rectangular (figure 2). At the same time, the basi- 
lar membrane is located in the centre of the cross-section with G(x) = G+(x) = - G-(x). 
However, both G and R are still arbitrary functions of x .  Another assumption 
that is made, to facilitate the discussion, is that Dl = D, = 0. More precisely, it is 
assumed that, except in the y-direction, the bending and twisting rigidities of the 
basilar membrane are so weak that they do not contribute until the O ( d )  problem. 
This assumption is consistent with the observations of Voldrich (1978). 

As a consequence of the symmetry of the geometry in the y-co-ordinate, and 
assuming the driving function g ,  satisfies the same symmetry condition, both the 
pressure p(x , y , x )  and the displacement of the basilar membrane c(x,y) are even 
functions of y. This observation helps to simplify the Fourier expansions introduced 
below. Also, note that with the assumption on the bending and twisting rigidities it is 
relatively easy to show that the function 0; is real. This can be done by multiplying 
(32) by Po and integrating over the cross-section, from which one finds that 

where rr refers to the portion of the basilar membrane in the cross-section located a t  x. 
With the 'assumption of a rectangular geometry, i t  is possible to find the Green 

function explicitly. It is given as 

W cos a,x cos a,? cos y,(y + R )  cos ym( E + R) 
(n/2R)' (4n2 + m2) - 6'2 q x ,  y, 2; '57) = - 2 c c,c,, 9 

n,nt=O 
?la even 

I - if m = 0, 
where [: if m + 0, 

c, = 

a,, = nn/R, y,,, = mn/2R.  



70 M .  I$. Holmes 

Therefore, from (37) 

where 

To obtain (40) from (37), the following identity is used (Hansen 1975): 

cos an z - cash km(R - Z) - 
2 S cn 2 k,sinhRk, ' 

n S o  ($) (4n2+m2)-8z 

With (40), the integro-differential equation (38) becomes 

The right-hand side of (41) is a separable function, and so, with ( 3 2 e ) ,  i t  follows 

" 1 
W 

L(x, Y) = a0(y4 - 6G2y2 + 5G4) + a2m 7 cos y2,(y + R) + BZmy2 + D2, 3 
m = l  Yzm 

where 

( -  l)n'+l(l +Y; ,G~)COSY~~G 

'$im 
D2m = 

Note that both B,, and D, are funct,ions of x. The coefficients ni(x) are determined 
by substituting (42) into (41), from which one finds that 

where 
coth Rk, 2 coth Rk,, 

24Rk, ' RkZm 
A, = 

Therefore, from (42) i t  follows that 
m 

(44% b) 

where am,n represents the values of the respective integrals one obtains in substituting 
(42) into (43). This can be written in matrix form as 

a =  Ma, (46) 

where M represents the matrix of coefficients obtained from tho sums in (45), and 
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Consequently, the original eigenvalue problem has been reduced to  an algebraic 
problem, although there is an infinite number of unknowns. However, it is only 
necessary to  use the first two or three terms to obtain a reasonably accurate approxi- 
mation to the solution. As a final comment, note that, by using a first-term approxima- 
tion in (42)) one obtains a computational procedure similar to  that used by Steele & 
Taber (1979). 

Once the ai and the phase function are determined from (46)) one can calculate 
$(x) from (33) and A,(x) from (34). Also, from (40) and (43)) 

if m =# 0, 

12 if m = 0. 
where 

7. Numerical example 

L = 3.5 cm, v = 0.008 cm s-l, p = 1.0 g cm-3 and 
To apply the results of the following sections to  the cochlea, we now let B = 0.05 cm, 

where E = 4 x 106 dyn cm-2, h = 4 x cm and IT = 0.3. Also, 

G(x)  = &(5x+ l), R* = 0.08 cm. (4% (49) 

The above value for R* gives a constant cross-sectional area of 0.01 em2. These values 
are representative of those found in the human cochlea and are the same as used for 
the low-frequency theory (Holmes 1981). 

As mentioned earlier, it is only necessary to use the first three terms in (42) to 
obtain a reasonably accurate approximation. I n  this case, (46) takes the form 

Consequently, 62 is a solution of the equation 

det (M - I) = 0, (51) 

where I represents the 3 x 3 identity matrix. Solving (51), one finds that 8, = rt ik(x), 
where k(x) is a positive function of x. As we want waves that travel in the direction of 
increasing x then, using (36), 

O(Z) = -i/Ik(s)ds. 

With this, it is a simple matter to solve (50) for a, and a,, in terms of a,,, and then to 
calculate $(x) and A,(x) from (33) and (34). 

The roots of (51) are found using the secant method, where the initial approxima- 
tions are based on the value obtained from the low-frequency theory. At each 
x-location it takes, on the average, four iterations to obtain the root with a relative 
error of less than After determining the phase function, $(x) is found from (33), 
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h 2 3 4 5 6 7 8 9  -8.00 1 x 1 0 2  L-4 2 3 : 4 I : : :  5 6 7 8 9  

1 x 103 I x 104 
Frequency (Hz) 

FIGURE 3. Normalized amplitude (a) and phase (b )  of the wave on the basilar membrane, as 
functions of frequency, for x = 0.25 (5); 0-5 (e); 0-75 (0). 

using Simpson’s rule to evaluate the integrals. I n  the process, forty points are used 
along the x-axis. These methods are easy to  implement and fairly fast. For example, 
on an IBM 3033, the tuning and phase curves shown in figure 3, in total take less than 
2 s in CPU time to compute. Therefore, the method is comparable in terms of com- 
puting time with Steele & Taber (1979). 

The results of the calculations are shown in figures 3-5. I n  the first, figure 3, the 
tuning and phase curves are shown for the points x = 4, 3 and 2.  The tuning curve 
represents the ratio of the amplitude of the basilar membrane to  the amplitude of the 
stapes. So the curves shown in the figure represent the amplitude obtained from (42), 
with y = 0, and with yw = 1 in (29). I n  conjunction with this, the amplitude, or 
envelope, of the centre-line deflection of the basilar membrane is shown in figure 4 
for the driving frequencies that produced the maximum amplitude in figure 3. Finally, 
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x-axis 

FIGURE 4. Normalized amplitude of the wave on the basilar membrane, as a function of position, 
for driving frequencies corresponding to 760 Hz ( O ) ,  1500 Hz (a), 4000 Hz (0). 

.- E 

3 
I 

a 

a e 

Fraction of x~ 

FIGURE 5.  Time it takes the wave to reach the point of maximum response zM for frequencies 
used in figure 4. Also shown, by the unmarked curve, are the values obtained by von Bekesy 
(1960) (for which zy = 1). 

the time it takes the wave to propagate from the basal end to the longitudinal location 
of the maximum response, which is denoted by xM, is shown in figure 5 .  

The curves in figure 3 show a reasonably sharp tuning, much more so than is 
obtained from the low-frequency theory. Nevertheless, they are not as sharp as 
might be expected from neural measurements. They are, in a qualitative sense, in 
agreement with Rhode’s (1971) measurements, although they do not show a constant 
phase angle for high frequencies. Also, the propagation times shown in figure 5 are in 
agreement with von Bekesy’s (1 960) observations. 

I n  figure 4 it’ can be seen that the amplitude is not negligible a t  the apical end for 
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FIGURE 6. The dependence of the point of maximum response on frequency. Shown are the 
curves obtained from the low-frequency theory (0) and the present model (0 ) ;  as well as tho 
experimental results of von Bekesy (1960) ( + )  and Crowc et al. (1934) ( x ). 

the 760Hz curve. Consequently, the results of this theory begin to become ques- 
tionable for frequencies any less than this. Although the analysis can be corrected, 
to some extent, by re-applying i t  to the reflected wave, i t  is easier to use the low- 
frequency theory in this region. 

The point of maximum response on the basilar membrane for the curves in figure 4 
agree with empirical measurements. I n  fact, if one plots the dependence of the 
longitudinal location of the maximum response, as a function of the frequency, the 
curve shown in figure 6 is obtained. The measurements of von Bekesy (1960) and 
Crowe, Guild & Polvogt (1934) are also shown, as well as the location of xhI as deter- 
mined from the low-frequency theory. For the low-frequency curve, the values given 
earlier are used, except for the thickness which is taken to be 1-3 x 10-3 em. This 
figure indicates the frequency regimes in which the two theories are valid. For 
example, the upper limit of the low-frequency theory seems to be in the neighbourhood 
of 2000 Hz. The lower limit of the present theory is around 1000 Hz, which is con- 
sistent with the comments of the preceding paragraph. All in all, in their respective 
regions, these theories agree quite well with the experimental results. Also, note that 
the lower limit for the present theory can be extended somewhat by taking into 
account the decreasing thickness of the basilar membrane. In  doing this, it would not 
be necessary to use two different values for the thickness when comparing it with the 
low-frequency theory. 

Comparing figures 3 and 5 ,  one can see that the tuning and amplitude curves agree 
as to the frequency and spatial location of the maximum response. For example, the 
frequency producing the maximum response a t  x = 0.25 is approximately 4000 Hz, 
and, equivalently, the point of maximum response for a driving frequency of 
4000 Hz is x = 0.25. This does not happen with the low-frequency theory. 

Another difference between the two theories is the dependence of the wave velocity 
on the frequency. I n  the present theory, the wave slows down with increasing fre- 
quency (figure 6) .  In other words, the velocity of the wave is a monotonic~~lly de- 
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creasing function of the frequency. This dependence, although contrary to von 
Bekesy’s observations, is consistent with the measurements of Robles, Rhode & 
Geisler (1976). 

As illustrated in the last few paragraphs, the present model is quite capable of 
describing most of the high-frequency behaviour in the cochlea. I n  doing this, it has 
been seen that, not unexpectedly, there are differences with some of the results from 
the low-frequency theory. However, it is interesting to note that the low-frequency 
theory can be obtained, in a sense, from the results of the present analysis. In  par- 
ticular, if one assumes that p o  and c,, have the form as in the low-frequency theory, 
which means that a, = az = ... = 0 in (42) and (47), then one obtains the low- 
frequency WKB phase, attenuation and amplitude functions from (39), (33) and 
(34), respectively (Chadwick & Cole 1979). 

The model used here can be generalized in a number of ways without greatly 
affecting the analysis used in finding the solution. For example, if one were to model 
the basilar membrane as an anisotropic plate with a varying thickness, then the only 
change would be to the left-hand side of (32b) .  Tn this case, the DZ used in the non- 
dimensionalization would be a typical value of the rigidity in the y-direction (Holmes 
1981). Through the use of the correspondence principle, one could also assume that 
the plate is viscoelastic. However, this would mean that the bending rigidities depend 
on the frequency. I n  this case, because of (4), the analysis could be affected. It is 
expect,ed, though, that with something like the standard linear model the analysis 
extends in a straightforward manner. 
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